Covering radius in the Hamming permutation space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Packing and Covering Problems in the Hamming Permutation Space

Consider the symmetric group Sn equipped with the Hamming metric dH . Packing and covering problems in the finite metric space (Sn, dH) are surveyed, including a combination of both.

متن کامل

A random construction for permutation codes and the covering radius

Weanalyse a probabilistic argument that gives a semi-random construction for a permutation code on n symbols with distance n− s and size (s!(log n)1/2), and a bound on the covering radius for sets of permutations in terms of a certain frequency parameter.

متن کامل

Dynamic Hub Covering Problem with Flexible Covering Radius

Abstract One of the basic assumptions in hub covering problems is considering the covering radius as an exogenous parameter which cannot be controlled by the decision maker. Practically and in many real world cases with a negligible increase in costs, to increase the covering radii, it is possible to save the costs of establishing additional hub nodes. Change in problem parameters during the pl...

متن کامل

On Permutation Masks in Hamming Negative Selection

Abstract. Permutation masks were proposed for reducing the number of holes in Hamming negative selection when applying the r-contiguous or r-chunk matching rule. Here, we show that (randomly determined) permutation masks re-arrange the semantic representation of the underlying data and therefore shatter self-regions. As a consequence, detectors do not cover areas around self regions, instead th...

متن کامل

On the Covering Radius Problem for Codes I . Bounds on Normalized Covering Radius

In this two-part paper we introduce the notion of a stable code and give a new upper bound on the normalized covering radius ofa code. The main results are that, for fixed k and large n, the minimal covering radius t[n, k] is realized by a normal code in which all but one of the columns have multiplicity l; hence tin + 2, k] t[n, k] + for sufficiently large n. We also show that codes with n _-<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2020

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2019.103025